Critical Random Walk in Random Environment on Trees
نویسندگان
چکیده
We study the behavior of Random Walk in Random Environment (RWRE) on trees in the critical case left open in previous work. Representing the random walk by an electrical network, we assume that the ratios of resistances of neighboring edges of a tree Γ are i.i.d. random variables whose logarithms have mean zero and finite variance. Then the resulting RWRE is transient if simple random walk on Γ is transient, but not vice versa. We obtain general transience criteria for such walks, which are sharp for symmetric trees of polynomial growth. In order to prove these criteria, we establish results on boundary crossing by tree-indexed random walks. These results rely on comparison inequalities for percolation processes on trees and on some new estimates of boundary crossing probabilities for ordinary mean-zero finite variance random walks in one dimension, which are of independent interest.
منابع مشابه
Critical Random Walk in Random Environment on Trees of Exponential Growth
This paper studies the behavior of RWRE on trees in the critical case left open in previous work. For trees of exponential growth, a random perturbation of the transition probabilities can change a transient random walk into a recurrent one. This is the opposite of what occurs on trees of sub-exponential growth.
متن کاملRandom walks in random environment on trees and multiplicative chaos 1
We study random walks in a random environment on a regular, rooted, coloured tree. The asymptotic behaviour of the walks is classified for ergodicity/transience in terms of the geometric properties of the matrix describing the random environment. A related problem, with only one type of vertices and quite stringent conditions on the transition probabilities but on general trees has been conside...
متن کاملRandom Walks on Directed Covers of Graphs
Directed covers of finite graphs are also known as periodic trees or trees with finitely many cone types. We expand the existing theory of directed covers of finite graphs to those of infinite graphs. While the lower growth rate still equals the branching number, upper and lower growth rates do not longer coincide in general. Furthermore, the behaviour of random walks on directed covers of infi...
متن کاملA PRELUDE TO THE THEORY OF RANDOM WALKS IN RANDOM ENVIRONMENTS
A random walk on a lattice is one of the most fundamental models in probability theory. When the random walk is inhomogenous and its inhomogeniety comes from an ergodic stationary process, the walk is called a random walk in a random environment (RWRE). The basic questions such as the law of large numbers (LLN), the central limit theorem (CLT), and the large deviation principle (LDP) are ...
متن کاملA Random Walk with Exponential Travel Times
Consider the random walk among N places with N(N - 1)/2 transports. We attach an exponential random variable Xij to each transport between places Pi and Pj and take these random variables mutually independent. If transports are possible or impossible independently with probability p and 1-p, respectively, then we give a lower bound for the distribution function of the smallest path at point log...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003